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Summary 

The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools 
designed to meet current routine and research-oriented multidimensional processing requirements, and 
to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, 
which allow programs running simultaneously to exchange streams of data under user control. In an 
NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, 
each of which performs one component of the overall scheme, such as Fourier transformation or linear 
prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. 
The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, 
and calibration information in all dimensions, so that schemes can be constructed without the need to 
explicitly define or anticipate data sizes or storage details of real and imaginary channels during process- 
ing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, 
favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation 
to different data formats, simpler software development and maintenance, and the ability to distribute 
processing tasks on multi-CPU computers and computer networks. 

Introduction 

As use of  multidimensional N M R  has become wide- 
spread, demands on multidimensional spectral processing 
software have increased. Software must keep pace both 
with N M R  applications research, and with the routine use 
o f  N M R  for biomolecular structure determination. Rou- 
tine use requires software to accommodate  increasing 
numbers of  experiments, larger data sizes, more compli- 
cated processing schemes, and common  use of  4D N M R  
(Pelczer and Szalma, 1991; Bax and Grzesiek, 1993). 
Various vendor-specific modes o f  quadrature detection 

and data storage must also be addressed. At the same 
time, N M R  technique developrfient research requires soft- 
ware to serve as a platform for testing and evaluation of  
new experiments and acquisition methods, as well as new 
spectral analysis and enhancement approaches. 

The user community for multidimensional processing 
software is also changing, and many practitioners o f  bio- 
logical N M R  are not necessarily familiar with N M R  
computer  applications or signal processing. In addition, 
there are generally increasing expectations for software 
that is graphically oriented, error-free, and works har- 
moniously with other applications on a variety o f  net- 

*Availability: The NMRPipe system is available via a secured-access anonymous ftp site. For details on retrieving the software, send a request 
by electronic mail addressed to 'delaglio@helix.nih.gov'. 
**To whom correspondence should be addressed at: National Institutes of Health, Laboratory of Chemical Physics, NIDDK, Building 5 B2-31, 
5 Center Drive MSC 0505, Bethesda, MD 20892-0505, U.S.A. 
Abbreviations: 1D, 2D, 3D, one-, two-, three-dimensional; nD, multidimensional; CPU, central processing unit; FID, free induction decay; I/O, 
input/output; LP, linear prediction; MEM, maximum entropy method; Mb, megabyte; NOE, nuclear Overhauser effect. 

0925-2738/$ 6.00 + 1.00 �9 1995 ESCOM Science Publishers B.V. 



278 

worked computers. Correspondingly, current software 
development approaches often favor creation of several 
small, well-targeted applications, coordinated by standard 
graphics and command tools. 

We present here the NMRPipe system, a comprehen- 
sive new multidimensional NMR data processing system 
that addresses the growing needs for ease of use, ef- 
ficiency, and flexibility of multidimensional spectral pro- 
cessing in the laboratory network. The NMRPipe system 
is a UNIX pipeline-based software environment for multi- 
dimensional processing, coordinated with spectral graphics 
and analysis tools. The system was implemented in the C 
programming language (Kernighan and Ritchie, 1988), 
using the program development tools of UNIX (Kerni- 
ghan and Pike, 1984). 

Several other multidimensional NMR data processing 
packages have been developed over the past decade, in- 
cluding the popular FELIX (Biosym Technologies Inc., 
San Diego, CA), as well as AZARA (W. Boucher, unpub- 
lished results), Dreamwalker (Meadows et al., 1994), 
GIFA (Delsuc, 1989), NMR Toolkit (Hoch, 1985), 
NMRZ (New Methods Research Inc., Syracuse, NY), 
Pronto (Kjaer et al., 1994), PROSA (Giintert et al., 
1992), and TRIAD (Tripos Inc., St. Louis, MO). The 
NMRPipe system incorporates a novel approach to spec- 
tral processing that is complementary to other methods, 
and provides many advantages. Spectral processing is 
performed using modules connected by UNIX pipes, 
which allow programs running simultaneously to ex- 
change streams of data under user control. In this ap- 
proach, a stream of spectral data flows through a pipeline 
of processing programs, each of which performs one 
component of the overall scheme, such as Fourier trans- 
formation or mirror-image linear prediction. 

The processing programs of the NMRPipe system 
work in the same way as ordinary UNIX commands; this 
means that complete multidimensional processing schemes 
can be constructed as standard UNIX command scripts, 
which are easy to learn and manipulate. The pipeline 
approach provides favorable processing speeds, while at 
the same time allowing the choice of both all-in-memory 
and disk-bound processing, easy adaptation of new al- 
gorithms and differing data formats, and simpler software 
development and maintenance. Since processing is a- 
chieved via a series of programs running simultaneously, 
the NMRPipe pipeline approach also provides a way to 
exploit the capabilities of multiprocessor computers or to 
distribute processing tasks across a network. 

In addition to the general advantages of the pipeline 
approach, there are other advantages that arise from 
specific details of NMRPipe's implementation. For ex- 
ample, the components of NMRPipe are engineered to 
maintain and exploit accurate records of data size, detec- 
tion mode, calibration information, and processing para- 
meters in all dimensions. This means that schemes can be 

created and reused easily, since parameters can be spec- 
ified in terms of spectral units, and there is no need to 
explicitly define or anticipate data sizes during processing. 
The parameter record atso allows NMRPipe modules to 
assemble the correct combination of real and imaginary 
data for a given dimension automatically; this permits 
dimensions to be processed and reprocessed in any order 
with schemes that are generally the same, regardless of 
acquisition mode and vendor-specific storage details. 

Methods 

The NMRPipe approach relies on the UNIX operating 
system concepts of data streams, filters, and pipes, so 
these are discussed in some detail here. By necessity, these 
concepts are becoming increasingly familiar to the bio- 
molecular NMR community, since modern spectrometers 
are commonly controlled by UNIX computers, and mol- 
ecular structures are usually generated and visualized on 
UNIX workstations. 

UNIX commands and filters 
UNIX has no strong distinction between commands 

built into the operating system and programs that are 
part of 'external' applications such as spectral processing. 
This means that application programs can potentially be 
used like ordinary UNIX commands, and the standard 
UNIX facilities for combining and manipulating them can 
be exploited. For example, one or more UNIX commands 
can be placed into an ordinary text file, called a shell 
script. Such a shell script can then be executed by its 
name, just as if it were also a UNIX command. 

A UNIX filter is a general term for a command or 
program that reads input, processes it in some way, and 
produces an output. One example of a filter is the UNIX 
command sort, which reads lines of text and writes them 
out again sorted in alphabetical order. Another example 
is the UNIX command tr, which translates characters 
(e.g. from upper-case to lower-case) in its input before 
writing them. Depending on the nature of the task in- 
volved, UNIX filters may read and process their input 
data in small parts, such as tr (which can process one 
character at a time), or in its entirety, such as sort (which 
must read the entire input first in order to sort it). 

In UNIX terminology, a filter's source of input data is 
called standard input and its destination for output data 
is called standard output. By default, standard input is 
data entered from the keyboard, and standard output is 
data displayed on the computer screen. UNIX allows 
filters to take their input from an existing file instead of 
the keyboard; this is called input redirection, and it is 
performed using the < character. Correspondingly, filters 
can send their output to a file instead of to the screen; 
this is called output redirection, and it is performed using 
the > character. The following two UNIX commands 



show examples of redirection. The first command sorts 
the lines in file 'old.text', and writes the sorted results to 
file 'newl.text'; the second command converts the text in 
file 'newl.text' from lower-case to upper-case, and stores 
the result in file 'new2.text': 

sort < old.text > newl.text 
tr 'a-z' 'A-Z' < newl.text > new2.text 

Commands like these illustrate the concept of a data 
stream, where data 'flows' from an input source, travels 
through a filter, and collects at an output destination. 

UNIX command-line arguments 
The use and behavior of a UNIX command can be ad- 

justed by command-line arguments, which are additional 
parameters specified after the command. The parameters 
are usually identified by words or letters prefixed by the 
- character. For instance, while the UNIX command sort 
will sort text in alphabetical order, adding the argument 
-r will cause text to be sorted in reverse alphabetical 
order: 

sort -r < old.text > newl.text 

Each UNIX command has its own list of possible com- 
mand-line arguments, which are described in the com- 
mand's manual page, a brief document (but often more 
than one page) that is available on-line. UNIX manual 
pages have a standard format, and new manual pages can 
be added easily, so that application programs can make 
use of the same on-line help system used by other UNIX 
commands. 

UNIX pipes 
UNIX pipes allow commands to be connected together 

in a series, where the output of one command is used 
directly as the input to the next command. A series of 
programs connected in this way is often called a pipeline. 
A pipe is specified in a UNIX command line by the I 
character inserted between commands. For example, we 
can combine the sorting and character translation com- 
mands into a single pipeline: 

sort < old.text I tr 'a-z' 'A-Z' > new2.text 

In this pipeline, data travels from the input file through 
the sort filter, and the sorted result travels via a pipe 
through the tr filter and then to the output file. As 
shown, pipes allow simple commands to be combined to 
perform complex tasks, while avoiding the need for inter- 
mediate results to be saved in files. Pipeline communica- 
tion is also relatively fast, since UNIX pipes are generally 
implemented via physical memory buffers in the operating 
system (Stevens, 1992). 
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Pipelines, like UNIX command lines in general, can be 
split over several lines of text. This is especially useful 
when the pipeline contains many components. In the 
UNIX idiom, the \ character is used at the end of a line 
to continue a command onto the next line. For example, 
a functionally equivalent version of the sort pipeline de- 
scribed above could be entered as follows: 

sort < old.text \ 
] tr 'a-z' 'A-Z' > new2.text 

Spectral processing function as a UNIX filter 
The concept of a UNIX filter command can be exten- 

ded directly to spectral processing. By analogy, a spectral 
processing function can be implemented as a UNIX filter, 
which reads an input stream of unprocessed spectral data 
vectors, applies a spectral processing function to each vec- 
tor, and writes the result as a stream of processed vectors. 
We have implemented this concept as a program called 
nmrPipe, the central module of the NMRPipe system. 

The nmrPipe program applies a given processing func- 
tion to a stream of spectral data. The processing function 
is selected via a 'function name' argument -fn, and corre- 
sponding processing modes and parameters are specified 
by other optional command-line arguments. For example, 
the following three commands are filters that apply a 
forward Fourier transform (FT), an inverse Fourier trans- 
form, and a 90-degree zero-order phase correction (PS), 
respectively: 

Forward transform filter: 
Inverse transform filter: 
Phase correction filter: 

nmrPipe -fn FT 
nmrPipe -fn FT -inv 
nmrPipe -fn PS -p0 90 

The required input stream for nmrPipe consists of a 
header describing the data, followed by the binary data 
vectors themselves, usually in a sequential order. The 
output stream consists of the header, which is updated to 
reflect processing, followed by the processed data vectors. 
The stream format is meant to resemble the contents of 
an ordinary 2D file plane, so that such a file can be used 
directly with nmrPipe. 

As with other UNIX flters, nmrPipe reads and writes 
streams via standard input and standard output, but for 
convenience explicit input and output file names can be 
specified by the command-line arguments -in and -out. 
For example, the following two commands perform the 
same task; they both apply a Fourier transform to all the 
data vectors in file 'spec.fid', and save the result in file 
'spec.ft': 

nmrPipe -fn FT < spec.fid > spec.ft 
nmrPipe -fn FT -in spec.fid -out spec.fl 

The nmrPipe program includes implementations of many 
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c o m m o n  1D p r o c e s s i n g  func t ions ,  as well as severa l  o t h e r  

useful  e l ement s ;  these  a re  l is ted in Table  1, a n d  severa l  

are  d i scussed  in m o r e  de ta i l  below. 

TABLE 1 
PROCESSING FUNCTIONS OF THE nmrPipe PROGRAM a 

Spectral processing scheme as a U N I X  pipeline 
T h e  c o n c e p t  o f  a spec t r a l  p r o c e s s i n g  f u n c t i o n  per-  

f o r m e d  as a U N I X  fil ter leads  d i rec t ly  to  the  idea  o f  a 

Name Function Comments 

NULL Null function 
MAC Macro interpreter 

FT Fourier transform 
HT Hilbert transform 
LP Linear prediction b 
MEM Maximum entropy method r 

EM Exponential window 
GM Lorentzian/Gaussian window 
TM Trapezoid window 
SP Sine to a power window 

ZF Zero-fill 
EXT Extract a region 
PS Phase correction 
MC Modulus calculation 

SOL Solvent filter 
POLY Polynomial solvent filter 
POLY Polynomial base-line correction 
MED Model-free base-line correction 
BASE Linear base-line correction 
CBF Constant FID correction 
QART Quad artefact reduction ~ 
SMO Smoothing filter 

TP 2D X/Y transpose 
YTP 2D X/Y transpose 
ZTP 3D X/Z transpose 
ATP 4D X/A transpose 

REV Reverse data 
LS Left shift 
RS Right shift 
CS Circular shift 
FSH Shift via Fourier transform 
SHUF Various shuffling functions 
SIGN Various sign manipulations 
DX Derivative 
INTEG Integral 
COAD Co-addition of data 
ZD Zero diagonal region 
SET Set data to constant 
ADD Add a constant 
MULT Multiply by a constant 

No change to data 
User-written functions in a subset of C 

Complex, real, inverse, sign adjust, auto mode, etc. 
Ordinary, mirror image, auto mode 
Forward-backward c, mirror image d, etc. 
Prototype, 1D to 4D, two channel ~, deconvolution g 

First point scaling, inverse mode 
First point scaling, inverse mode 
First point scaling, inverse mode 
First point scaling, inverse mode 

Inverse mode 
By points, Hz, ppm, %, or left, right, etc. 
Frequency shift, inverse mode 
Modulus or power spectrum 

Time-domain convolution" 
Time-domain polynomial subtractioff 
Manual or automatid, all or selected region 
Automatic median method k 
Manually selected series of regions 
DC correction of FID 
Manual or automatic 
Adjustable filter length and coefficients 

In-memory; identical to YTP 
In-memory, all combinations of real and complex data 
In-memory, all combinations of real and complex data 
In-memory, all combinations of real and complex data 

Updates calibration 
Updates calibration 
Updates calibration 
Updates calibration, can invert signs of shifted data 
Provides non-integer shifts 
Complex interleave, byte swap, etc. 
Negate all, negate half, sign alternate, etc. 

Linear combination of points, vectors, or planes 
Adjustable diagonal slope, width, and offset 
All data or specified region 
All data or specified region 
All data or specified region 

a Several functions are described in more detail in the Appendix. 
b Kumaresan and Tufts, 1982; Barkhuijsen et al., 1985,1987; Stephenson, 1988; Hoch, 1989; Olejniczak and Eaton, 1990; Zhu and Bax, 1992a. 
c Delsuc et al., 1987; Zhu and Bax, 1992b. 
d Zhu and Bax, 1990. 

Maximum Entropy Reconstruction (Sibisi, 1983; Skilling and Bryan, 1984; Hore, 1985; Laue et al., 1985a; Stephenson, 1988; Kauppinen and 
Saario, 1993; Schmieder et al., 1994) is implemented according to the method of Gull and Daniell (Gull and Daniell, 1978; Wu, 1984). 

f Laue et al., 1985b; Hoch et al., 1990. 
g Ni and Scheraga, 1986; Ni et al., 1986; Mazzeo et al., 1989. 
h Marion et al., 1989a. 

Callaghan et al., 1984. 
Details of automated base-line detection are given in the Appendix entry for function POLY. 

k Friedrichs, 1995. 
t Parks and Johannesen, 1976; the automated mode uses a grid search to minimize the integral of an interactively selected artefact. 
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bruk2pipe -in ser \ Spectrometer-Format Input 

-xN 1024 -yN 104 -zN 64 \ Total Points in File 

-xT 512 -yT 52 -zT 32 \ Complex Points Acquired 
-xMODE Complex -yMODE Complex -zMODE Complex \ Acquisition Mode 
-xSW 7575.76 -ySW 8445.95 -zSW 1515.15 \ Spectral Width, Hz 
-xOBS 500.130 -yOBS 125.76 -zOBS 50.6800 \ Observe Frequency, MHz 
-xCAR 4.683 -yCAR 46.0 -zCAR 117.00 \ Carrier Position, PPM 
-xLAB HN -yLAB CACB -zLAB N \ Axis Labels 

-ndim 3 -aq2D States \ Dimension Count, 2D Mode 
-out fid/cbcaconh%03d.fid -verb -ov Output File Series 

Fig. 1. Annotated format conversion script used for a 3D CBCA(CO)NH FID acquired on a Bruker AMX spectrometer. The general form of 
the conversion script is the same for other spectrometers. Parameters for each dimension are specified via arguments prefixed by -x, -y, -z, and 
-a for the X-axis, Y-axis, Z-axis, and A-axis of the data. In order to accommodate padding that may have been performed by the spectrometer, 
there are separate parameters for the number of points stored in the input file and the number of points actually acquired. The acquisition modes 
are specified by keywords such as 'Sequential' (Redfield and Kunz, 1975), 'Complex' or 'States' (States et al., 1982), 'TPPI' (Marion and Wiithrich, 
1983), 'States-TPPI' (Marion et al., 1989b), etc., which define the Fourier transform mode and sign manipulation required; chemical shift 
calibration parameters are also recorded. The NMRPipe format output series is specified by the argument -out. Complete argument details are 
given in the Appendix. 

spectral processing scheme implemented as a UNIX pipe- 
line; this is the central concept of the NMRPipe system. 
In this method, spectral data flows through a pipeline of 
processing filters, each performing one aspect of the pro- 
cessing scheme. In practice, this is achieved by using 
multiple instances of the nmrPipe program, each with 
different command-line arguments to select a processing 
function and optional parameters. For example, the fol- 
lowing scheme applies a sinusoid-to-a-power window 
function (SP), zero-fill (ZF), Fourier transform (FT), and 
deletes the imaginary part  of the result (-di). In the ab- 
sence of additional arguments, the processing functions in 
this scheme use default parameters, so that the SP func- 
tion applies a sine bell, the ZF function doubles the data 
size, and the FT function applies a complex forward 
transform: 

nmrPipe -fn SP -in spec.fid \ 
] nmrPipe -fn ZF \ 
] nmrPipe -fn FT -di -out spec.ft 

Considered in more detail, this scheme consists of  three 
instances of nmrPipe, connected by pipes, and running 
'simultaneously'. This means that the UNIX operating 
system will alternate CPU time and other resources be- 
tween the instances of nmrPipe while the scheme is ex- 
ecuting. During execution, the first instance of nmrPipe 
reads a data vector from the input file 'spec.fid', applies 
the window function SR and writes the result vector to 
the pipeline. The second instance of nmrPipe reads the 
apodized vector from the pipeline when it becomes avail- 
able, applies zero-filling, and writes the result to the next 
stage of the pipeline. The third instance of  nmrPipe reads 
the apodized, zero-filled vector from the pipeline when it 
becomes available, applies a Fourier transform, and 

writes the result to file 'spec.ft'; meanwhile, the earlier 
instances of nmrPipe may have already begun to read and 
process the next vector. This procedure continues until all 
vectors have passed through the pipeline. 

Spectrometer format conversion 
Many of the advantages of the NMRPipe system stem 

from the fact that relevant acquisition parameters for all 
dimensions are established during conversion of data 
from the spectrometer format to the NMRPipe format. A 
typical 3D conversion script is given in Fig. 1. As shown, 
the conversion establishes the acquisition modes, data 
sizes and chemical shift calibration information for each 
dimension. The parameters are usually entered manually, 
but most of these could be extracted automatically from 
spectrometer parameter files (D. Benjamin, private com- 
munication). 

The conversion programs themselves have been engin- 
eered to compensate for vendor-specific differences in the 
way that real and imaginary data are interleaved for each 
dimension, so that the converted result always provides 
the real and imaginary data for all dimensions in a pre- 
dictable order. This allows subsequent processing schemes 
to be independent of spectrometer vendor. Currently, the 
NMRPipe system includes conversion facilities for GE 
Omega export format, JEOL GX and Alpha formats, 
Chemagnetics format, Varian Unity format, and Bruker 
AM, AMX, and DMX formats. 

Like nmrPipe, the conversion programs are also imple- 
mented as UNIX filters. This means that the output 
stream of a conversion command can be sent directly into 
a processing pipeline, without the need to save an inter- 
mediate converted result on disk. It also means that a 
conversion program can read data produced by another 
pipeline command as an alternative to reading data di- 



282 

rectly from a file. One useful example of  this is the ability 
to convert data directly from a tape drive by using a tape 
reading command (such as the UNIX command dd) as 
the data source. Another example is the ability to convert 
versions of spectrometer data that were compressed to 
save space, by using a decompression command (such as 
the UNIX command zeat) as the data source. 

Multidimensional processing via pipelines 
The NMRPipe system includes two approaches to 

extend the pipeline method to multiple dimensions. One 
approach is to insert an appropriate matrix transpose 
command into the interior of a processing pipeline. 
Another approach is to use commands at the beginning 
or end of the pipeline that are capable of  reading or 
writing vectors from an arbitrary dimension of a multidi- 
mensional spectrum. The two approaches can be used 
separately or in combination. 

In a pipeline, a transpose function acts like a reservoir, 
which accumulates an intermediate result in memory 
before sending the transposed version down the remainder 
of the pipeline. Therefore, functions before a transpose 
receive and process a stream of vectors from a given 
dimension, and functions after the transpose receive and 
process a stream of vectors from the exchanged dimen- 
sion. Depending on which dimensions are being ex- 
changed, a transpose function may require only enough 
memory for a 2D plane from the data, or it may require 

enough memory for an entire 3D or 4D matrix, so it is 
not generally applicable. 

As noted above, the pipeline approach can be extended 
to multidimensional processing simply by adding two 
kinds of  modules, as an alternative to in-memory trans- 
pose. The first module is a program at the head of the 
pipeline, which creates a data stream by reading vectors 
from a given dimension of a multidimensional input. The 
second module is a program at the tail of  the pipeline, 
which gathers processed vectors and writes them to a 
given dimension of a multidimensional output. We have 
implemented two such programs, xyz2pipe and pipe2xyz, 
which are suitable for reading and writing multidimen- 
sional data in the multifile 2D plane format suggested by 
Kay et al. (1989). The programs take their names from 
the nomenclature X-axis, Y-axis, Z-axis, A-axis, etc., 
which we use to describe the dimensions of the spectral 
data. Correspondingly, the dimension to be read or writ- 
ten is specified simply as a command-line argument -x, -y, 
-z, or -a. When reading or writing from a given dimen- 
sion, the programs alter the sequential order of the other 
dimensions in the data stream in a regular, predictable 
way, by a multidimensional rotation. This means that 
schemes can be created to conserve the original data 
order, or change it to accommodate a particular process- 
ing or analysis strategy. The programs require at most 
enough physical memory to contain only four or so 2D 
planes from the data. In addition, the programs have 

xyz2pipe -in fid/hnco%03d.fid -x 
nmrPipe -fn SOL 

nmrPipe -fn 
nmrPipe -fn 

nmrPipe -fn 

nmrPipe -fn 
nmrPipe -fn 

nmrPipe -fn 

nmrPipe -fn 
nmrPipe -fn 
nmrPipe -fn 

-verb 

SP -off 0.4 -end 0.98 -pow 2 

ZF 
FT 

PS -p0 43 -pl 0.0 -di 
EXT -xl llppm -xn 5.5ppm -sw 

TP 
SP -off 0..4 -end 0.95 -pow 1 
ZF 

FT 

nmrPipe -fn PS -p0 -90 -pl 180 -di 
pipe2xyz -out ft/hnco%03d.ft2 -y 

-c 0.5 

xyz2pipe -in ft/hnco%03d.ft2 -z -verb \ 
I nmrPipe -fn SP -off 0.4 -end 0.95 -pow 1 -c 0.5 \ 
I nmrPipe -fn ZF \ 
I nmrPipe -fn FT \ 
I nmrPipe -fn PS -p0 0.0 -pl 0.0 -di \ 
I pipe2xyz -out ft/hnco%03d.ft3 -z 

\ Read Vectors from X-Axis 
\ Solvent Filter 

\ Window, ist Point Scale 

\ Zero Fill 
\ Fourier Transform 

\ Phase, Delete Imaginaries 
\ Extract Amide Region 
\ 2D Transpose X/Y 

\ Window 
\ Zero Fill 

\ Fourier Transform 

\ Phase, Delete Imaginaries 

Write Vectors to Y-Axis 

Read Vectors from Z-Axis 
Window, Ist Point Scale 
Zero Fill 
Fourier Transform 
Phase, Delete Imaginaries 
write Vectors to Z-Axis 

Fig. 2. Annotated processing script for 3D amide proton-detected data, illustrating the use of 2D transpose. In this scheme, the X-axis and Y-axis 
are read, processed, and written in the first pass, and the Z-axis is read, processed and written in the second pass. Each pass consists of a pipeline 
beginning with the xyz2pi~ program and ending with the pipe2xyz program; these programs use the arguments -x, -y, -z, and -a to specify which 
dimension is being read or written. The input and output file series are specified by the template arguments -in and -out. Complete argument details 
are given in the Appendix. 
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bruk2pipe -in 

nmrPipe -fn 

nmrPipe -fn 
nmrPipe -fn 

nmrPipe -fn 

nmrPipe -fn 

nmrPipe -fn 

nmrPipe -fn 

pipe2xyz -out 

ser $ARGS \ 

SP -off 0.35 -end 0.95 -pow 2 -c 0.5 \ 

ZF -size 512 \ 

FT -di \ 

TP \ 

SP -off 0.35 -end 1.0 -pow 1 -c 0.5 \ 

ZF -size 128 \ 

FT -di \ 

ft/noe%02d%03d. DAT -y 

xyz2pipe -in ft/noe%02d%03d. DAT -z -verb \ 

I nmrPipe -fn SP -off 0.35 -end 0.95 -pow 1 -c 1.0 \ 

I nmrPipe -fn ZF -size 64 \ 

I nmrPipe -fn FT -di \ 

I pipe2xyz -out ft/noe%02d%03d. DAT -z -inPlace 

xyz2pipe -in ft/noe%02d%03d. DAT -a -verb \ 

I nmrPipe -fn SP -off 0.35 -end 0.95 -pow 1 -c 1.0 \ 

I nmrPipe -fn ZF -size 64 \ 

I nmrPipe -fn FT -di \ 

I pipe2xyz -out ft/noe%02d%03d. DAT -a -inPlace 

Convert Bruker Format 

Window, Scale Ist Point 

Zero Fill 

Fourier Transform 

2D Transpose X/Y 

Window, Scale ist Point 

Zero Fill 

Fourier Transform 

Write Vectors to Y-Axis 

Read Vectors from Z-AXis 

Window 

Zero Fill 

Fourier Transform 

Write Vectors to Z-AXis 

Read Vectors from A-Axis 

Window 

Zero Fill 

Fourier Transform 

Write Vectors to A-Axis 

Fig. 3. Annotated 4D format conversion and processing script for a 256* x 64* x 16" x 16" point 4D ~3C-J3C correlated IH-IH NOE FID, illustrating 
the use of 2D transpose (the asterisks denote complex data). Acquisition parameters have been abbreviated by $ARGS and phase correction steps 
have been omitted to save space. In this scheme, the results of the format conversion program brnk2pipe are sent directly to the processing pipeline 
without the need to save an intermediate converted FID on disk. The size of the final result is 512 x 128 x 64 x 64 points. Processing time: 8 h and 
20 min on a Sun Sparc 10 workstation. 

been engineered to allow in-place processing (i.e., same 
input and output files), and to provide the correct combi- 
nations of real and imaginary data so that dimensions can 
be processed in any order. 

In the simplest multidimensional scheme, each dimen- 
sion of the data is processed in a separate pass, which 
requires reading the entire input from disk, and writing 
the entire result. Such a scheme can be simplified and 
made more efficient by adding one or more in-memory 
transpose steps, which eliminates the need to save an 
intermediate result on disk. A typical 3D processing script 
employing a 2D transpose approach is shown in Fig. 2. 
In this script, the X-axis and Y-axis are processed to- 
gether in the first pass, after which the Z-axis is processed 
in a second pass. Such a script represents an effective 
compromise between disk access and physical memory 
use, since in practice only a small number of 2D planes 
are being manipulated in memory at any given time by 
the various programs in the pipeline. If  large amounts of 
physical memory are available, schemes with 3D or 4D 
in-memory transpose steps can also be constructed, again 
reducing the need to save intermediate results. The overall 
approach provides basic multidimensional schemes, which 
require only modest amounts of memory for 3D or 4D 
processing, but which can be altered easily to take advan- 
tage of large memory systems. Complementary examples 
in the case of 4D processing are given in Figs. 3 and 4. 

The script shown in Fig. 3 converts and processes a 4D 
spectrum in three passes, using only 2D in-memory trans- 
pose. In this case, the spectrometer format conversion, X- 
axis processing, and Y-axis processing are all performed 
in the first pass, the Z-axis is processed in the second 
pass, and the A-axis is processed in the third pass. The 
corresponding script in Fig. 4 performs the same process- 
ing, but it has been rearranged so that the spectrum is 
processed in only two passes by the addition of a 3D in- 
memory transpose function. The first pass performs the 
spectrometer format conversion and the processing for the 
X-, Y- and Z-axes. The A-axis is processed in the second 
pass. As these examples show, in-memory processing is 
achieved at the discretion of the user, simply by use of 
appropriate transpose functions. Only minor alteration of 
a given processing scheme is needed, and no reconfigur- 
ation or recompilation of the software is required. In- 
stead, the transpose functions, like all other functions of 
the NMRPipe system, allocate suitable amounts of  mem- 
ory automatically. 

Processing functions and options 
The NMRPipe system utilizes a relatively small num- 

ber of processing functions, but these are augmented by 
a variety of modes and options; the processing functions 
listed in Table 1 and in the Appendix include over 300 
options and parameters. For example, the functions 
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bruk2pipe -in ser SARGS \ Convert Bruker Format 

I nmrPipe -fn SP -off 0.35 -end 0.95 -pow 2 -c 0.5 \ Window, Scale ist Point 
I nmrPipe -fn ZF -size 512 \ Zero Fill 

I nmrPipe -fn FT -di \ Fourier Transform 

] nmrPipe -fn YTP \ 2D Transpose X/Y 

I nmrPipe -fn SP -off 0.35 -end 1.0 -pow 1 -c 0.~ \ Window, Scale Ist Point 
I nmrPipe -fn ZF -size 128 \ Zero Fill 

I nmrPipe -fn FT -di \ Fourier Transform 

I nmrPipe -fn ZTP \ 3D Transpose X/Z 

I nmrPipe -fn SP -off 0.35 -end 0.95 -pow 1 -c 1.0 \ Window 
I nmrPipe -fn ZF -size 64 \ Zero Fill 

I nmrPipe -fn FT -di \ Fourier Transform 

I pipe2xyz -out ft/noe%02d%03d.DAT -z Write Vectors to Z-Axis 

xyz2pipe -in ft/noe%02d%03d. DAT -a -verb \ Read Vectors from A-Axis 
I nmrPipe -fn SP -off 0.35 -end 0.95 -pow 1 -c 1.0 \ Window 
I nmrPipe -fn ZF -size 64 \ Zero Fill 

I nmrPipe -fn FT -di \ Fourier Transform 

I pipe2xyz -out ft/noe%02d%03d. DAT -a -inPlace Write Vectors to A-Axis 

Fig. 4. Annotated 4D format conversion and processing script for a 256* x 64* x 16" x 16" point 4D 13C-13C correlated fHSH NOE FID, illustrating 
the use of both 2D and 3D transpose. Acquisition parameters have been abbreviated by $ARGS and phase correction steps have been omitted 
to save space. This scheme performs the same processing as the script shown in Fig. 3, but in this version, a 3D in-memory transpose is used to 
avoid saving one of the intermediate results. The size of the final result is 512 x 128 x 64 x 64 points. Processing time: 7 h and 55 min on a Sun Sparc 
10 workstation. 

POLY (polynomial fitting) and LP (linear prediction) 
each have a wide collection of parameters, which allows 
them to perform many tasks. The POLY function can be 
used as a solvent filter in the time domain, as well as for 
manual or automated correction according to a reliable 
in-house algorithm, and the corrections can be limited to 
selected spectral regions if desired. The linear prediction 
function LP can be used to predict points in either the 
start, end, or interior of  existing data, in backward, for- 
ward or mixed forward-backward mode, with or without 
mirror-image methods and root reflection. In addition to 
this flexibility, the LP function has also been implemented 
using a matrix inversion procedure instead of the iterative 
(and often unstable) root-searching approach, making it 
especially robust (G. Zhu and A. Bax, unpublished re- 
sults). 

The NMRPipe processing functions make extensive use 
of default parameter settings. This helps to make argu- 
ment lists more concise, since individual parameters can 
be adjusted while leaving default settings intact. For 
example, when used with no other arguments, LP will 
apply linear prediction and root reflection with eight 
complex coefficients to extend the original data to twice 
its size. The number of coefficients (the LP order) can be 
changed via the -ord option, and the number of predicted 
points can be changed independently via the -pred para- 
meter. Mirror-image LP can be selected simply by adding 
either flag -ps0-0 or -ps90-180 to any LP command line, 

depending on whether data have no acquisition delay, or 
a half-dwell delay. 

Many of the functions exploit or update the spectral 
header parameters during processing. For example, apod- 
ization, zero-filling, and phase correction details are re- 
corded, and chemical shift calibrations can be updated 
automatically by any function that extracts or shifts the 
data. The functions also keep track of the valid time- 
domain size of the data, as influenced by time-domain 
shifts or frequency-domain extractions. Where appropri- 
ate, parameters can be specified in ppm or Hz as well as 
in points. 

Inverse processing 
Multidimensional enhancement schemes commonly call 

for inverse processing, so several functions have been 
implemented with an inverse mode for convenience. For 
instance, window functions support an inverse mode that 
divides by the window function, and zero-filling supports 
an inverse mode that strips away previous zero padding. 
These conveniences make it possible to construct compli- 
cated inverse processing protocols concisely, and if para- 
meters are selected appropriately, the original data can 
commonly be recovered to a precision of better than one 
part in 105. Examples are given in Figs. 5 and 6, which 
show forward/inverse processing scripts for applying lin- 
ear prediction and Maximum Entropy reconstruction in 
the two indirectly detected dimensions of a 3D spectrum. 
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In the case of  the LP scheme in Fig. 5, forward and in- 

verse processing is used to minimize the number  of  signals 

that must  be predicted in any given vector in order  to 

increase the predict ion's  stabili ty and incidentally decrease 

the time required (Kay et al., 1991). In the case of  the 
M E M  scheme in Fig. 6, forward and inverse processing 

is used to allow a more stable au tomated  base-line correc- 
tion by using da ta  processed with window functions, 

before da ta  is reprocessed without  window functions for 

Maximum Entropy reconstruction.  

New capabilities and data formats 
One o f  the special advantages  of  the pipeline approach  

is the ease and flexibility with which new capabili t ies and 

data  formats can be implemented.  The p r imary  da ta  
format  of  the N M R P i p e  system consists o f  one or  more 

2D file planes, each with a 2048-byte header, followed by 

four-byte f loat ing-point  spectral da ta  values in a sequen- 
tial order. Other  mult idimensional  da ta  formats can be 

adapted  simply by use o f  alternative programs to read or  

write da ta  at the head or  tail o f  a pipeline; the submatr ix  

xyz2pipe -in fid/cbcanh%03d.fid -x -verb 

nmrPipe -fn POLY -time 

nmrPipe -fn SP -off 0.4 -end 0.98 -pow 2 

nmrPipe -fn ZF -auto 

nmrPipe -fn FT 

nmrPipe -fn PS -p0 125 -pl 0 -di 

nmrPipe -fn EXT -xl 10.3ppm -xn 5.9ppm -sw 

pipe2xyz -out ft/cbcanh%03d.ft3 -x 

xyz2pipe -in ft/cbcanh%03d, ft3 -z -verb 

I nmrPipe -fn SP -off 0.4 -end 0.95 -pow 1 

I nmrPipe -fn ZF -auto 

I nmrPipe -fn FT 

I nmrPipe -fn PS -p0 -90 -pl 180 -di 

I pipe2xyz -out ft/cbcanh%03d.ft3 -z -inPlace 

xyz2pipe -in ft/cbcanh%03d.ft3 -y -verb 

nmrPipe -fn LP -ps90-180 -ord 16 

nmrPipe -fn SP -off 0.4 -end 0.98 -pow 1 

nmrPipe -fn ZF -auto 

nmrPipe -fn FT 

nmrPipe -fn PS -p0 -90 -pl 180 -di 

pipe2xyz -out ft/cbcanh%03d.ft3 -y -inPlace 

xyz2pipe -in ft/cbcanh%03d.ft3 -z -verb 

nmrPipe -fn HT -auto 

nmrPipe -fn PS -inv -hdr 

nmrPipe -fn FT -inv 

nmrPipe -fn ZF -inv 

nmrPipe -fn SP -inv -hdr 

nmrPipe -fn LP -ps90-180 -ord 8 

nmrPipe -fn SP -off 0.4 -end 0.98 -pow 1 

nmrPipe -fn ZF -auto 

nmrPipe -fn FT 

nmrPipe -fn PS -hdr -di 

pipe2xyz -out ft/cbcanh%03d.ft3 -z -inPlace 

\ 
\ 

- c 0 . 5  \ 
\ 
\ 
\ 
\ 

Read Vectors from X-Axis 

Solvent Filter 

Window, Scale ist Point 

Zero Fill 

Fourier Transform 

Phase, Delete Imaginaries 

Extract Amide Region 

Write Vectors to X-Axis 

Read Vectors from Z-Axis \ 
Window \ 
Zero Fill \ 
Fourier Transform \ 
Phase Correct \ 
Write Vectors to Z-Axis 

Read Vectors from Y-Axis 

Mirror-Image LP 

Window 

Zero Fill 

Fourier Transform 

Phase, Delete Imaginaries 

Write Vectors to Y-Axis 

Read Vectors from Z-Axis 

Hilbert Transform 

Undo Previous Phase 

Inverse Fourier Transform 

Undo Previous Zero Fill 

Undo Previous Window 

Mirror-Image LP 

Window 

Zero Fill 

Fourier Transform 

Rephase 

Write Vectors to Z-Axis 

Fig. 5. Annotated 3D processing script for amide-detected data, illustrating the use of inverse processing features in a linear prediction scheme. 
The scheme took 4 h and 55 min to perform on a Sun Sparc 10 workstation with a 3D CBCA(CO)NH FID of 512" • 52* • 32* points. The result 
is based on an intermediate amide proton dimension size of 1024 points, yielding a 3D spectrum of 299 x 256 • 128 points after extraction of the 
amide proton region and deletion of imaginary data. In the scheme, LP is used on the indirectly detected Y-axis and Z-axis of the data. This 
scheme is arranged so that when LP is applied to double the size of a given dimension, the other dimensions have been completely processed with 
a window function, zero-filling, and phasing. This localizes the signals as much as possible in the other dimensions and thus simplifies the signal 
content of the dimension to be predicted (Kay et al., 1991). In the scheme, the X-axis is processed in the first pass, the Z-axis is processed in the 
second pass, the Y-axis is extended via LP and processed in the third pass, and the Z-axis is inverse-processed, extended via LP, and reprocessed 
in the fourth pass. 
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xyz2pipe -in fid/noe%03d, fid -x -verb 

nmrPipe -fn SOL 

nmrPipe -fn SP -off 0.35 -end 0.99 -pow 2 

nmrPipe -fn ZF -auto 

nmrPipe -fn FT 

nmrPipe -fn PS -p0 0.0 -pl 0.0 -di 

nmrPipe -fn EXT -xl 5ppm -xn 10.5ppm -sw 

runrPipe -fn TP 

nmrPipe -fn ZF -zf 2 -auto 

nmrPipe -fn RS -rs 1 -sw 

nmrPipe -fn SP -off 0.45 -end 0.95 -pow 1 

nmrPipe -fn FT -di 

nmrPipe -fn POLY -auto -ord 0 

pipe2xyz -out ft/noe%03d.ft3 -x 

-c 0.5 

xyz2pipe -in ft/noe%03d, ft3 -z -verb 

nmrPipe -fn ZF -zf 2 -auto 

nmrPipe -fn RS -rs 1 -sw 

nmrPipe -fn SP -off 0.35 -end 0.95 -pow 1 
nmrPipe -fn FT -di 

nmrPipe -fn POLY -auto -ord 0 

nmrPipe -fn HT 

nmrPipe -fn FT -inv 

nmrPipe -fn SP -inv -hdr 

nmrPipe -fn FT -di 

nmrPipe -fn TP 

nmrPipe -fn HT 

nmrPipe -fn FT -inv 

nmrPipe -fn SP -inv -hdr 

nmrPipe -fn FT -di 

nmrPipe -fn TP 

nmrPipe -fn MEM -ndim 2 -neg -zero -alpha 0.001 

-xconv EM -xcQl 20 -yconv EM -ycQl 15 

-sigma 200 -freq 

pipe2xyz -out ft/noe%03d.ft3 -z -inPlace 

\ Read Vectors from X-Axis 
\ Solvent Filter 

\ Window, Adjust Ist Point 
\ Zero Fill 

\ Fourier Transform 

\ Phase, Delete Imaginaries 

\ Extract Amide Region 
\ 2D Transpose X/Y 

\ Zero Fill Twice 

\ Right-Shift (1-dwell Delay) 
\ Window 

\ Fourier Transform 

\ Auto Baseline Correct 
Write Vectors to X-Axis 

\ Read Vectors from Z-Axis 
\ Zero Fill Twice 

\ Right-Shift (1-dwell Delay) 
\ Window 
\ Fourier Transform 

\ Auto Baseline Correct 
\ Hilbert Transform 
\ Inverse Fourier Transform 

\ Undo Previous Window 
\ Fourier Transform 

\ 2D Transpose X/Y 
\ Hilbert Transform 

\ Inverse Fourier Transform 
\ Undo Previous Window 
\ Fourier Transform 

\ 2D Transpose X/Y 

\ 2D MEM, +/- Mode with 

\ Deconvolution In Both 
\ Dimensi ons 

Write Vectors to Z-Axis 

Fig. 6. Annotated 3D processing script for amide-detected data, illustrating the use of inverse processing features in a 2D Maximum Entropy 
Reconstruction scheme. The scheme took 16 h and 45 min to perform on a Sun Sparc 10 workstation for a 3D 1SN-NOE FID of 512" x 128" • 64* 
points. The result is based on an intermediate amide proton dimension size of 1024 points, yielding a 3D spectrum of 420 • 512 x 128 points after 
extraction of the amide proton region and deletion of imaginary data. In the scheme, 2D MEM is applied to planes in the indirectly detected Y-axis 
(tH) and Z-axis (15N) of the data, which were each acquired with a one-dwell delay. The scheme is arranged to temporarily reorder the data so 
that the MEM function is provided with a stream of data planes from the indirect dimensions (the original Y- and Z-axes). The indirect dimensions 
are first processed by right-shifting, Fourier processing, and automated zero-order base-line correction to compensate for the one-dwell-time 
acquisition delay; the Fourier processing includes use of window functions to increase the effectiveness of the automated base-line correction. The 
planes are then reprocessed so that they are presented for Maximum Entropy reconstruction already phased, base-line corrected, and extensively 
zero-filled, but transformed without any window functions. Additional argument details are given in the Appendix. 

formats  o f  the powerful spectral  analysis programs N M R -  

View (Johnson and Blevins, 1994) and A N S I G  (Kraulis,  
1989; Kraul is  et al., 1994) have been accommoda ted  by 
their  au thors  in this way. To facilitate work of  this kind,  
the s tandard  N M R P i p e  instal lat ion includes C source 
code for the spectrometer  format  conversion programs,  
file header  interpreta t ion and general I /O utilities, as well 
as the mul t id imensional  I / 0  programs xyz2pipe and pipe2- 
xyz. 

New processing functions can be implemented  as 
simple U N I X  filter programs,  which can be inserted di- 

rectly in the pipeline da ta  s tream without  the need to 
alter the nmrPipe program itself. As an alternative to 
writ ing a complete  program,  nmrPipe  includes the M A C  

function, a macro  interpreter  that  implements  a subset o f  
the C programming  language, augmented with a variety 
of  vector  processing commands.  The interpreter  was im- 
plemented pr imari ly  for development  purposes,  using the 



UNIX compiler generator Yacc (Johnson, 1986). The 
macro language allows direct manipulation of the data 
points, and the possibility to control the details of  file I/O 
during processing. In its default mode, the MAC function 
will apply the contents of  a user-written macro to every 
1D vector in the given dimension, so that new functions 
can be implemented simply by placing a list of vector 
functions or other processing steps in a text file. This 
provides a convenient way to prototype new processing 
applications. For example, special processing steps for 
drift correction, gradient-enhanced data (Cavanagh et al., 
1991; Palmer et al., 1991; Kay et al., 1992) and Bruker 
DMX digitally oversampled data have been developed 
this way. 

Parallel processing 
Many possible approaches can be envisioned for per- 

forming a multidimensional processing task in parallel 
over a network of computers or on a multi-CPU ma- 
chine. By modifying only the multidimensional I/O pro- 
grams (xyz2pipe and pipe2xyz), we have implemented one 
simple but broadly applicable approach, which relies only 
on standard U N I X  network file sharing, and avoids the 
need for special machine-specific parallel compiling or 
configuration of software. This particular implementation 
uses static load balancing, which means that the amount 
of data to be processed by each computer is fixed at the 
outset of  a task, and therefore there is no compensation 
for possible changes in CPU performance during the 
course of  a calculation. In practice, the user performs 
parallel processing by creating a single script that pro- 
cesses a complementary subset of a complete spectrum, 
depending on which computer is used to execute it; the 
same script is then executed simultaneously on all CPUs 
involved. The division of data is performed automatically 
according to a user-supplied list of computers and their 
approximate relative speeds, so that only minor modifica- 
tion of an ordinary scheme is needed to convert it to a 
parallel scheme. 

Graphical interface 
As noted by Gtintert et al. (1992), it is a difficult task 

to create and maintain a single, integrated spectral 
graphics and processing program. Nevertheless, in our 
experience we have found it essential to be able to graphi- 
cally inspect the FID data, to interactively choose pro- 
cessing parameters, and to examine intermediate process- 
ing results on the workstation screen or in hard copy. In 
an attempt to meet these needs, we have developed a 
supplemental graphics interface called NMRDraw, using 
the X11 network graphics library and the XView graphi- 
cal interface toolkit (Heller and Van Raalte, 1993). The 
program, shown in Fig. 7, currently runs on Sun, SGI, 
and IBM RS6000 UNIX workstations. 

The NMRDraw program provides facilities for inspect- 

287 

TABLE 2 
3D PROCESSING TIMES ON VARIOUS WORKSTATIONS 
FOR A 512"x64"• POINT HNCO FID PROCESSED BY 
THE SCRIPT GIVEN IN FIG. 2" 

Computer type Time (s) 

SGI Challenge, 4 R4400 C P U s  b 154 
SGI Challenge, 4 R4400 CPUg t87 
HP 9000/755 239 
SGI Indigo 408 
DEC Alpha 3000 d 487 
SGI Challenge, 1 R4400 CPU e 525 
Sun Sparc 10 644 
IBM RS6000/530 1128 
Sun Sparc 2 1208 
Sun Sparc 1 1864 
Convex C3830 f 2146 

" Times reported are actual times elapsed. No special attempt was 
made to vectorize or parallelize the code; only ordinary optimizing 
compilers were used. During processing, each axis size was doubled 
by zero-filling, yielding a spectrum of 417 x 128 x64 points after 
extraction of the amide proton region and deletion of imaginary 
data. 

b This time is based on a distributed version of the processing script, 
which divides each processing task into four equal parts, one for 
each CPU. 
This time is based on an ordinary version of the processing script, 
whose components are distributed automatically between CPUs by 
the operating system because they are separate programs. 

d This version of the software was compiled with a four-byte floating- 
point compatibility mode, which is roughly half as fast as the best 
speed of the CPU. 
This time is based on execution of the script on a single CPU. 

r This time was measured under heavy loading (44 users). 

ing raw and processed data via 1D and 2D slices or pro- 
jections from all dimensions, as well as a macro editor for 
creating and executing complete multidimensional pro- 
cessing scripts. NMRDraw also allows real-time display 
and interactive phasing of an arbitrary number of 1D 
slices selected from any dimension of the spectrum and 
displayed simultaneously. Interactive 1D processing is 
performed via program-controlled pipelines to nmrPipe, 
providing the functionality of both graphics and process- 
ing without the need to incorporate the two in a single 
program. In keeping with the philosophy of well-separ- 
ated applications, the data extraction and display facilities 
of NMRDraw can also be operated remotely by two-way 
pipelines to other programs, in order to construct graphi- 
cal spectral analysis schemes. A prototype example of this 
approach, modeled after the NMRView spectral analysis 
package (Johnson and Blevins, 1994), is shown in Fig. 8. 

Independently of  our graphics interface development, 
spectroscopists at a test site for the NMRPipe system 
have used the TCL graphics command language to create 
interactive nmrPipe schemes (N. Tjandra, private com- 
munication). TCL provides a method to build graphics 
applications using shell scripts alone, without the need to 
write, compile, and link a complete program (Ousterhout, 
1994). Since TCL provides an easy method for building 
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Fig. 7. The NMRDraw graphical processing and analysis interface, illustrating interactive processing of a 1D vector extracted from the Z-axis of 
a 3D interferogram. The topmost border of the program window describes the current functions of the mouse buttons. The command panel along 
the top contains graphical tools for executing commands, selecting the region of data to view, setting contour parameters, and adjusting phase 
values. The 2D contour display shows the fourth transformed Hr*/~3CO plane from a partially transformed HNCO spectrum (Z-axis (~SN) data 
is still in the time domain), with positive data drawn in a continuous range of blue colors, and negative data in a range of red colors. The small 
window over the contour display at the top left is a pop-up command area for entering nmrPipe processing commands. The cross-hair superim- 
posed over the contour display shows the user-selected location for extraction of the Z-axis 1D vector. The time-domain vector itself, drawn along 
the bottom of the display, is shown after interactive extension via linear prediction. The Fourier-processed version of the vector, also prepared 
interactively, is drawn above the 1D time-domain data. 

graphical applications at the U N I X  shell script level, it is 
ideal for use with N MRPi pe  schemes, which also operate 
at the shell script level. Using this approach, it was poss- 
ible to create a graphical interface that provides routine 
format conversion and processing without the require- 
ment for users to edit shell scripts directly. 

Companion software 
In addition to the processing and display facilities 

described above, the NMRPi pe  system includes several 
other applications, such as algebraic combination of  spec- 
tra, simulation of  t ime-domain or  frequency-domain data 
from peak tables, multidimensional nonlinear least- 
squares modeling of  spectral line shapes, general-purpose 
functional fitting with Monte Carlo error estimation, and 
Principal Component  Analysis. Stand-alone functions for 
examining and adjusting spectral header parameters are 

also included. Processed data from the NMRPipe  system 
can be used directly with the P IPP/CAPP system for 
computer-assisted spectral analysis (Garrett  et al., 1991); 
together, these software systems have been used to help 
generate roughly 10% of  the N M R  structures deposited 
in the Brookhaven Protein Databank since the beginning 
of  1994. 

Results and Discussion 

The NMRPipe  system has been tested in over 50 lab- 
oratories, and has proven to be easy to use, robust, and 
thorough in its capabilities. In our  direct experience, it is 
also more efficient than previous approaches we have 
tried, and it has successfully been adapted to new data 
formats and acquisition modes. Because of  its design 
principles, it has been easy to port  and maintain this 
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Fig. 8. The NMRDraw graphical processing and analysis interface, illustrating operation of the program's facilities by pipeline communication 
with a remote application, allowing separation of assignment and analysis programs and the graphics system. The remote application can be a 
program or a TCL script. Shown is a prototype application for browsing through strips from related amide-detected 3D experiments. In the 
application, the remote program decides what spectral regions and other graphics should be displayed, and transmits appropriate instructions to 
NMRDraw. In turn, NMRDraw transmits information about user input such as mouse clicks, so the remote program can respond to the user. 
The strips from a given spectrum are displayed in pairs showing orthogonal views at the given ~HN/15N coordinate, and strips from related spectra 
can be overlaid to highlight corresponding signals if desired. In this illustration, the four pairs of strips displayed show data from a CBCANH 
spectrum, a CBCA(CO)NH spectrum, an overlay of CBCANH and CBCA(CO)NH spectra, and an HNCO spectrum. The square inset at the upper 
right displays the corresponding location from a 2D ~H/ZSN correlated spectrum, and the list at the lower right tabulates peak locations selected 
by the user via the mouse. 

system on several different computer platforms, and to co- 
ordinate it with a variety of  graphics and analysis systems. 

Processing times on various computers for a typical 3D 
application are given in Table 2, and times for some other 
applications are given in the legends o f  Figs. 3-6. The 
main source of  performance overhead in these examples 
is due to the multiplane data format and to pipeline com- 
munication. We decided to use the multiplane format in 
order to accommodate  preexisting software that also used 
this format. While the format has the advantage of  sim- 
plicity, it is not  necessarily the best choice in all respects, 
especially for 4D data, since the number of  file planes can 
become very large and relatively inefficient to manipulate. 
But, since the source and destination formats are indepen- 
dent o f  the processing pipeline itself, other formats could 
easily be implemented, for instance by substituting the 

programs that read and write multiplane format data by 
programs that read and write submatrix format data. In 
this respect, the processing pipeline can be thought  o f  as 
a format-independent processing engine. 

The overhead due to data format, while measurable, is 
not  important  in many cases. For example, consider the 
processing times for two versions of  4D processing given in 
Figs. 3 and 4. The version in Fig. 4 is 25 min faster than 
that in Fig. 3, because it avoids one intermediate read/write 
o f  the 4D data. However, this improvement amounts  to 
only a 5% decrease in the overall processing time. This 
also suggests that an all-in-memory approach such as the 
one employed by PROSA (Gtintert et al., 1992) is not  
always an advantage, since the performance gain will 
often be small, but the physical memory  requirements 
(> 1024 Mb in this case) may constitute a serious obstacle. 
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As noted by Levy et al. (1986), use of virtual memory 
does not provide an effective solution to this problem, 
although in years to come, computers with multi-Gb 
physical memory capacity may become commonplace. 

Overhead due to pipeline communication and manage- 
ment is an intrinsic aspect of the NMRPipe system. This 
overhead is examined in Fig. 9. As shown, the overhead 
time increases roughly linearly with the number of pro- 
grams in the pipeline. For the Sun Sparc 10 workstation, 
this overhead contributes about 2 min to a typical 3D 
processing scheme. This amounts to about 15% of the 
time used for ordinary Fourier processing, and an insub- 
stantial percentage for linear prediction applications. 

A distinct performance advantage of the NMRPipe 
system is the ease with which processing tasks can be 
distributed over more than one CPU or workstation. The 
processing scripts themselves are naturally parallel, since 
they consist of several programs running simultaneously. 
Thus, as shown in Table 2, an ordinary NMRPipe 
scheme can show speed improvements on a multi-CPU 
computer without the need for special machine-specific 
compiling or vectorization, since the various programs in 
the script will be distributed at the discretion of the oper- 
ating system. In the case shown for the four-CPU SGI 
Challenge, this simple approach yielded a 70% parallel 
efficiency compared to the same scheme executed on one 
CPU. In addition, the facilities of the NMRPipe system 
allow a processing task to be explicitly distributed by the 
user, an approach that yields even better performance, 
and still avoids the need for machine-specific optimi- 
zation. An example is given in Table 3, which shows the 
results of a network-distributed processing application, 
with an efficiency of over 90% on five SGI workstations. 
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Fig. 9. Overhead processing time due to pipeline communication and 
management for a 32 Mb data set measured on a Sun Spare 10 
workstation. As shown, the overhead time increases roughly linearly 
with increasing numbers of functions in the pipeline. In this case, the 
best fit least-squares line, also shown, represents an overhead of 0.19 
s/Mb for each additional stage in the pipeline. 
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TABLE 3 
N E T W O R K - D I S T R I B U T E D  PARALLEL PROCESSING 
TIMES FOR A Z-AXIS LINEAR PREDICTION APPLI- 
CATION ON A NETWORK OF SGI INDIGO COMPUTERS" 

No. of processors Time (min) Parallel efficiency b (%) 

1 119  100  

2 59 99 
3 40 99 
4 30 99 
5 26 91 

a An interferogram of 512x 128x32'  points was extended to 512• 
128 x 64* points by forward-backward LP with eight complex coef- 

ficients, and the result was doubled by zero-filling and Fourier pro- 
cessed. The processing task was divided equally on each computer 
involved. 

b The parallel efficiency is computed assuming that the ideal increase 
in processing speed is proportional to the number of computers 
used. 

Conclusions 

The NMRPipe implementation of multidimensional 
spectral processing via UNIX pipes provides an approach 
that is comprehensive, easy to use, flexible, extensible, 
and efficient. It naturally accommodates parallel process- 
ing approaches, and encourages and supports use of well- 
separated applications for graphics and analysis. Since the 
NMRPipe approach is complementary to existing meth- 
ods that rely on monolithic programs, its unique combi- 
nation of advantages is likely to prove increasingly useful 
as biomolecular NMR continues to advance. 
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Appendix 
Description of  selected processing modules  and arguments 

Generic arguments  

The following is a list of  arguments used by more than 
one program or function in the examples and figures. 

-di deletes imaginary data from the current dimension 
after the given processing function is performed. 

-hdr extracts parameters recorded during previous 
processing from the spectral header rather than the com- 
mand line. 

-in specifies the input file or file template (see 'Input 
and output templates' below). 

-inPlace permits in-place processing, which is replace- 
ment of the input data by the output result. 

-inv activates the inverse mode of a given function; 
function PS will apply inverse (negative) phase correction; 
function FT will perform an inverse Fourier transform; 
function ZF will undo any previous zero-filling; function 
SP will apply the inverse window function and first point 
scaling. 

-out specifies the output file or file template (see 'Input 
and Output Templates' below). 
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-or permits overwriting of any preexisting files. 
-sw updates the sweep width and other ppm calibration 

information to accommodate an extraction or shift func- 
tion. 

-verb performs processing in verbose mode, with status 
messages. 

Processing functions 
The following is an alphabetical list of the nmrPipe 

processing functions used in the examples and figures. 
The functions and arguments described are not complete 
lists, but rather only those used in the examples. 

EXT extracts a region from the current dimension with 
limits specified by the arguments -xl and -xn; the limits 
can be labeled in points, percent, Hz, or ppm. Alterna- 
tively, the left or right half of the data can be extracted 
with the arguments -left and -right. 

FT applies a real or complex forward or inverse 
Fourier transform, with sign alternation or complex con- 
jugation, as indicated by spectral parameters or com- 
mand-line arguments. 

HT performs a Hilbert transform to reconstruct im- 
aginary data, choosing between ordinary and mirror- 
image mode if the argument -auto is used. 

LP extends the data to twice its original size by 
default, using a complex prediction polynomial whose 
order is specified by argument -ord. Mixed forward- 
backward LP is performed if the -fb argument is used. 
Mirror-image LP for data with no acquisition delay is 
performed if the argument -ps0-0 is used; mirror-image 
LP for data with a half-dwell acquisition delay is per- 
formed if the argument -psg0-1fl0 is used. 

MEM applies Maximum Entropy reconstruction ac- 
cording to the method of Gull and Daniell (1978): argu- 
ment -ndim specifies the number of dimensions to recon- 
struct, argument -neg activates the two-channel mode, for 
reconstruction of data with both positive and negative 
signals, argument -zero corrects the zero-order offset 
introduced during reconstruction, argument -alpha spec- 
ifies the fraction of a given iterate that will be added to 
the current MEM spectrum, argument -sigma specifies the 
estimated standard deviation of the noise in the time 
domain, argument -freq produces the final MEM result in 
the frequency domain, arguments -xconv and -yconv spec- 
ify the line-sharpening function, which in Fig. 6 is EM 
(Exponential Multiplication) for both dimensions, and 
arguments -xcQ1 and -ycQ1 specify the corresponding 
line-sharpening parameters, which in Fig. 6 are 20 Hz and 
15 Hz for the 15N and IH dimensions, respectively. Other 
arguments can be used to optimize convergence speed, or 
to increase stability for reconstruction of data with high 
dynamic range. 

POLY (frequency domain) applies a polynomial base- 
line correction of the order specified by argument -ord, 
via an automated base-line detection method when used 

with argument -auto. The default is a fourth-order poly- 
nomial. The automated base-line mode works as follows: 
a copy of a given vector is divided into a series of adjac- 
ent sections, typically eight points wide. The average 
value of each section is subtracted from all points in that 
section, to generate a 'centered' vector. The intensities of 
the entire centered vector are sorted, and the standard 
deviation of the noise is estimated under the assumption 
that a given fraction (typically about 30%) of the smallest 
intensities belong to the base-line, and that the noise is 
normally distributed. This noise estimate is multiplied by 
a constant, typically about 1.5, to yield a classification 
threshold. Then, each section in the centered vector is 
classified as base line only if its standard deviation does 
not exceed the threshold. These classifications are used to 
correct the original vector. 

POLY (time domain), when used with the argument 
-time, fits all data points to a polynomial, which is then 
subtracted from the original data. It is intended to fit and 
subtract low-frequency solvent signal in the FID, a pro- 
cedure that often causes less distortion than time-domain 
convolution methods. By default, a fourth-order poly- 
nomial is used. For speed, successive averages of regions 
are usually fit, rather than fitting all of the data points. 

PS applies the zero- and first-order phase corrections 
as specified in degrees by the arguments -p0 and -pl. The 
PS function applies no processing if these values are both 
zero; for this reason, a zero,zero phase correction step is 
commonly kept in a processing scheme for completeness, 
so that the scheme can be copied and reused more eas- 
ily. 

RS, when used in the time domain, applies a right-shift 
by the number of points specified by argument -rs, and 
updates the recorded time-domain size if the argument 
-sw is used. 

SOL uses time-domain convolution and polynomial 
extrapolation to suppress solvent signal with a default 
moving average window of +/- 16 points. 

SP applies a sine-bell window extending from sift(an) 
to sinr(bn) with offset a, end point b, and exponent r 
specified by arguments -off, -end, and -pow, and first- 
point scaling specified by argument -e. The default length 
is taken from the recorded time-domain size of the cur- 
rent dimension. By default, a=0.0, b= 1.0, r= 1.0 (sine 
bell), and the first point scale factor is 1.0 (no scaling). 

TP exchanges vectors from the X-axis and Y-axis of 
the data stream, so that the resultant data stream consists 
of vectors from the Y-axis of the original data. It is ident- 
ical to YTP. 

YTP is another name for the TP transpose function, 
which exchanges vectors from the X-axis and the Y-axis 
of the data stream. The alternative name is provided for 
contrast with the other transpose functions ZTP (X-axis/ 
Z-axis transpose) and ATP (X-axis/A-axis transpose). 

ZF pads the data with zeros; the amount of padding 



can be specified by argument -zf, which defines the num- 
ber of times to double the data size, or by the argument 
-size, which specifies the desired complex size after zero- 
filling. By default, the data size is doubled by zero-filling. 
Use of the argument -auto will cause the zero-fill size to 
be rounded up to the nearest power of two. 

ZTP exchanges vectors from the X-axis and Z-axis of 
the data stream, so that the resultant data stream consists 
of vectors from the Z-axis of the original data. 

Input and output templates 
The following describes the method used to specify 

input and output data in the multifile 2D plane format. 
3D File Name Templates: 3D data in the multifile 2D 

plane format is specified as a template, a single name that 
stands for a series of 2D file planes. The template in- 
cludes a format specification, usually '%03d', which is 
substituted by the Z-axis plane number in the actual file 
names. The format specification is interpreted by rules of 
the C programming language; the '03d' in the template 
means that the plane number will be included as a zero- 
padded three-digit number, to give a series of names such 
as rid/hoe001 ~fid, fid/noe002.fid, fid/noe003.fid, etc. 

4D File Name Templates: 4D data in the multifile 2D 
plane format is specified as a template, a single name that 
stands for a series of  2D file planes. The template in- 
cludes a format specification, usually '%02d%03d', which 
is substituted by the A-axis and Z-axis plane numbers in 
the actual file names. The format specification is inter- 
preted by rules of the C programming language; the '02d' 
and '03d' in the template mean that the A-axis plane 
number will be included as a zero-padded two-digit num- 
ber, followed by the Z-axis plane number as a zero-pad- 
ded three-digit number. 

Data input and output programs 
In the following, programs are described that are used 

along with nmrPipe in the examples and figures. The 
arguments described are not complete lists, but rather 
only those used in the examples. 

bruk2pipe converts binary data from various types of 
Bruker spectrometers to the nmrPipe data format. The 
related programs var2pipe and bin2pipe perform Varian 
Unity conversions and general-purpose binary conver- 
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sions, respectively. The programs take as input a file or 
data stream in the binary spectrometer format, and pro- 
duce a file, file series, or data stream in the NMRPipe 
format. The programs require a collection of  arguments 
defining the acquisition parameters for each dimension, 
prefixed by -x, -y, -z, and -a. Following are the common- 
ly required arguments: arguments -xN etc. define the total 
number of points saved in the input file for a given di- 
mension; arguments -xT etc. define the number of valid 
complex points actually acquired, in case this differs from 
the number of points saved in the input file; arguments 
-xMODE etc. define the quadrature detection mode of 
the given dimension; arguments -xSW etc. define the full 
spectral width in Hz for the given dimension; arguments 
-xOBS etc. define the observe frequency in MHz for a 
given dimension, while arguments -xCAR etc. define the 
carrier position in ppm; arguments -xLAB etc. define 
unique axis labels; argument -ndim defines the number of 
dimensions in the input; argument -aq2D defines the type 
of 2D output file planes produced as either magnitude 
mode, States/States-TPPI, or TPP1. 

pipe2xyz writes vectors from a data stream to the selec- 
ted axis of nD data in the multiplane format. The argu- 
ments -x, -y, -z, and -a select the axis, and the argument 
-out is used to specify the output file series as a template 
(see 'Input and output templates' above). In order to 
write to a given axis, the program pipe2xyz performs 
rotations of the data complementary to those performed 
by xyz2pipe. This means that a pipeline that begins with 
xyz2pipe reading from a given dimension and ends with 
pipe2xyz writing to the same dimension will conserve the 
original data order if no transpose steps are included in- 
between. 

xyz2pipe creates a data stream for multidimensional 
processing via pipeline by reading vectors from the selec- 
ted axis of nD data in the multiplane format. The argu- 
ments -x, -y, -z, and -a select the axis, and the argument 
-in is used to specify the input file series as a template 
(see 'Input and output templates' above). Depending on 
the dimension selected, the other dimensions are re- 
ordered by a multidimensional rotation, which is similar, 
but not always identical, to a transpose. If the original 
order of dimensions is described as XYZA .... the relative 
reordering of data can be summarized as follows: 

nmrPipe -fn TP 
nmrPipe -fn ZTP  
nmrPipe -fn ATP 

xyz2pipe -x 
xyz2pipe -y 
xyz2pipe -z 
xyz2pipe -a 

Exchange of the first two dimensions: 
Exchange of the first and third dimensions: 
Exchange of the first and fourth dimensions: 

No change in data order: 
Rotation of the first two dimensions (same as TP): 
Rotation of the first three dimensions: 
Rotation of the first four dimensions: 

XYZA... to YXZA... 
XYZA... to ZYXA... 
XYZA... to AYZX... 

XYZA... to XYZA... 
XYZA... to YXZA... 
XYZA... to ZXYA... 
XYZA... to AXYZ... 


